skip to main content

EVALUATING THE PERFORMANCE OF A NEW TEXT RHYTHM ANALYSIS TOOL


Vol.6, Issue 2, 2020, pp. 217-232 Full text


DOI: https://doi.org/10.33919/esnbu.20.2.3
WoS:

Authors:
1. Elena Boychuk http://orcid.org/0000-0001-6600-2971
2. Ksenia Lagutina http://orcid.org/0000-0002-1742-3240
3. Inna Vorontsova http://orcid.org/0000-0001-5897-9299
4. Elena Mishenkina https://orcid.org/0000-0002-1314-4156
5. Olga Belyayeva https://orcid.org/0000-0003-3658-7336

Affiliation:
1,3,4,5: K. D. Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, Russia
2: P. G. Demidov Yaroslavl State University, Russia

Contributor roles
Conceptualization, Funding acquisition: E.B. (lead), Data curation, Formal analysis, Investigation, Validation: E.B., K.L., I.V., E.M., O.B, E.B., K.L., I.V., E.M., O.B. (equal); Visualization: E.B., K.L., I.V. (equal); Methodology: E.B., K.L. (lead), I.V., E.M., O.B. (supporting), Software: K.L. (lead), E.B., I.V., E.M., O.B. (equal supporting), Writing – original draft: E.B., I.V. (lead), K.L., E.M., O.B. (equal supporting)


Abstract
The paper assesses and evaluates the performance of the ProseRhythmDetector (PRD) Text Rhythm Analysis Tool. The research is a case study of 50 English and 50 Russian fictional texts (approximately 88,000 words each) from the 19th to the 21st century. The paper assesses the PRD tool accuracy in detecting stylistic devices containing repetition in their structure such as diacope, epanalepsis, anaphora, epiphora, symploce, epizeuxis, anadiplosis, and polysyndeton. The article ends by discussing common errors, analysing disputable cases and highlighting the use of the tool for author and idiolect identification.

Keywords: text rhythm analysis, diacope, epanalepsis, anaphora, epiphora, symploce, epizeuxis, anadiplosis

Article history:
Received: 24 May 2020;
Reviewed: 30 June 2020;
Revised: 15 October 2020;
Accepted: 29 November 2020;
Published: 21 December 2020.

Citation (APA):
Boychuk, E., Lagutina, K., Vorontsova, I., Mishenkina, E., Belyayeva, O. (2020). Evaluating the Performance of a New Text Rhythm Analysis Tool. English Studies at NBU, 6(2), 217-232. https://doi.org/10.33919/esnbu.20.2.3

Funding: This research has been sponsored under Project № 19-07-00243 of the Russian Foundation for Basic Research (RFBR).

Copyright © 2020 Elena Boychuk, Ksenia Lagutina, Inna Vorontsova, Elena Mishenkina, Olga Belyayeva

This open access article is published and distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. If you want to use the work commercially, you must first get the authors' permission.

References:
Balint, M., & Trausan-Matu, S. (2016). A critical comparison of rhythm in music and natural language. Annals of the Academy of Romanian Scientists, Series on Science and Technology of Information, 9(1), 43–60.

Boychuk, E., & Belyaeva, O. (2019). La téchnique de stylométrie réalisée à la base de l’analyse informatique du rythme du texte. 10-ièmes Journées Internationales de Linguistique de Corpus (JLC). Université Grenoble-Alpes, 26-28.11.19. 163-167.

Boychuk E., Vorontsova I., Shliakhtina E., Lagutina K., Belyaeva O. (2020) Automated Approach to Rhythm Figures Search in English Text. In Wil M. P. van der Aalst, V. Batagelj, D. I. Ignatov, M. Khachay, V. Kuskova, A. Kutuzov, S. O. Kuznetsov, I. A. Lomazova, N. Loukachevitch, A. Napoli, P. M. Pardalos, M. Pelillo, A. V. Savchenko, E. Tutubalina (Eds.), Analysis of Images, Social Networks and Texts. AIST 2019, Communications in Computer and Information Science, vol 1086 (pp. 107-119). Springer. https://doi.org/10.1007/978-3-030-39575-9_11

Dubremetz, M., & Nivre, J. (2018). Rhetorical Figure Detection: Chiasmus, Epanaphora, Epiphora. Frontiers in Digital Humanities, 5(10). 1-16. https://doi.org/10.3389/fdigh.2018.00010

Dumalus, A., & Fernandez, P. (2011). Authorship attribution using writers rhythm based on lexical stress. Proceedings of the 11th Philippine Computing Science Congress. 82–88.

Hou, R., & Huang, C. (2020). Robust stylometric analysis and author attribution based on tones and rimes. Natural Language Engineering, 26(1), 49-71. https://doi.org/10.1017/S135132491900010X

Lagutina, K., Lagutina, N., Boychuk, E., Vorontsova, I., Shliakhtina, E., Belyaeva, O., Paramonov, I. (2019). A Survey on Stylometric Text Features. 25th Conference of Open Innovations Association (FRUCT), Helsinki, Finland, 2019, 184-195. https://doi.org/10.23919/FRUCT48121.2019.8981504

Larionov, V., Petryakov, V., Poletaev, A., Lagutina, K., Manakhova, A., Lagutina, N. and Boychuk, E., (2020). ProseRhythmDetector. K.D. Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, Russia. https://github.com/text-processing/prose-rhythm-detector

Plecháč, P., Bobenhausen, K., Hammerich, B. (2018). Versification and authorship attribution. A pilot study on Czech, German, Spanish, and English poetry. Studia Metrica et Poetica, 5(2), 29–54. https://doi.org/10.12697/smp.2018.5.2.02


1. Reviewer's name: Undisclosed
Review Content: Undisclosed
Review Verified on Publons

2. Reviewer's name: Undisclosed
Review Content: Undisclosed
Review Verified on Publons


Handling Editor: Boris Naimushin, PhD, New Bulgarian University
Verified Editor Record on Publons

Article Metrics